1. Simplify the following expressions.
i) $\quad 3 a^{2} \times 2 b^{-2} \times 4 a^{3} \div b$
ii) $\quad 4^{3} \times 4^{3} \times 4^{3} \times 4^{3} \times 5^{0} \times 6^{3}$
iii) $5^{4} \div\left(4^{3} \times 3^{2}\right)$
iv) $4 \times 3^{-3 / 4}$
2. Factorise the following.
i) $\quad p^{3} q+p^{2} q^{4}$
ii) $\quad \mathrm{pqr}^{2} s t^{3}-\mathrm{qrs}^{2} \mathrm{t}^{2}$
iii) $\quad p q+p q^{3} r^{4}+p^{2} q^{2} r^{2}$
iv) $\quad h^{3} j^{2} k^{3}+h^{3} j^{3} k^{3}+h^{3} j^{2} k^{5}+h^{8} j^{8} k^{8}$
3. Find the lowest common multiple of the following four sets.
i) $\{14,325\}$
ii) $\{3,25\}$
iii) $\{16,20\}$
4. Find the highest common factor of the following sets.
i) $\{15,231\}$
ii) $\{18,27\}$
iii) $\quad\{18,81\}$
iv) $\{560,7954\}$
5. Decompose the following numbers into prime factors.
i) 3829
ii) 193812
iii) 92012
iv) 2910
6. Round the following numbers to the nearest ten.
i) 2819
ii) $\quad 291.492$
iii) 2914.920
iv) 291.201
7. Write the following numbers in scientific notation to three significant figures.
i) $\quad 281.38291$
ii) 2837949281.291039
iii) 1929294929102019294872
iv) $\quad 9$
8. A cuboid has the edges that are $k+3,4 k+9$ and $6 k-12 \mathrm{~cm}$ long.
i) What is the total length of the edges of the cuboid?
ii) What is the surface area of the cuboid?
iii) What is the volume of the cuboid?
iv) If $k=4$, what are the values of the three quantities above?
v) What is the value of k when the volume of the cuboid is $100 \mathrm{~cm}^{3}$?
vi) Using the information that you calculated for parts i - iii of question 8, draw a graph showing how the surface area changes as k moves from 0 to 5 in steps of 0.5.
9. Write a rule explaining how to round a number to the nearest degree of 10.
10. In base ten, the highest digit we can have is nine. In base two, the highest digit that we can have is one. The base of any particular number must always be at least one more than the highest digit in that base.

Convert the following numbers into base 10.
i) Base $3 \quad 201022012$
ii) Base $8 \quad 763271627$
iii) Base $4 \quad 30101120331$
iv) Base $7 \quad 4361011212$

